Naval Command,
Control and Ocean
Surveillance Center RDT&E Division

San Diego, CA
92152-5001

September 1994

Q

(o))

M=

B=

N=

4% Technical Report 1672
| 22

2 ——

Scalable Programming
Environment

Perry Partow
Dennis Cottel

Sponsored by Office of Naval Research

94-3577
\\\l\\l\\\\ AN \\l\\\\\ll\\?ét%

Approved for putlic release; distribution is uniimited.

DTIC QUALITY INCPECTRED §

94 1118 205

Technicai Report 1672
September 1994

Scalable Programming Environment

Sponsored by Office of Naval Research

Perry Partow
Dennis Cottel

NAVAL CCMMAND, CONTROL AND
OCEAN SURVEILLANCE CENTER
RDT&E DIVISION
San Diego, California 92152-5001

K. E. EVANS, CAPT, USN
Commanding Officer

R. T. SHEARER
Executive Director

ADMINISTRATIVE INFORMATION

This work reported here was performed in FY 1994 under project RI14B41. The work
was sponsored by the Cffice of Naval Research (ONR-321), 800 North Quincy Street,
Arlington, VA 22217-5660, under program element 0602314N. This work was supported in

part by a grant of HPC time from the DoD HPC Distributed Center, NCCOSC RDTE DIV
Paragon.

Released by Under authority of

R. A. Dukelow, Head P. M. Reeves, Head
Systems Design Branch

Analysis and Simulation
Division

SM

EXECUTIVE SUMMARY
OBJECTIVE

This report describes the Scalable Programming Environment (SPE), which provides pro-
grammers with a transparent way of creating scalable parallel applications for large-grained
parallel computer architectures.

APPROACH

The SPE was developed on the Intel Paragon to support the Hybrid Digital Optical Processor
(HyDOP), a real-time acoustic signal processing application for undersea surveillance, sponsored
by the Office of Naval Research (ONR-321). All the scalable and reconfigurable needs of
HyDOP have been incorporated in a library of general programming calls. The development and
testing of the SPE evolved as the HyDOP project dictated. The Intel Paragon was made available
by the DoD HPC Modernization Program.

The SPE was designed with generality in mind, so that in addition to meeting the nceds of
HyDOP, it could be used in other similar types of applications. At least one other project has
already begun to use the SPE and is beginning to influence the SPE development.

RESULTS

The SPE, which has been designed primarily to support data-flow processing applications,
allows programs to be scaled to execute on any number of processing nodes while requiring no
changes to the compiled binary code. The user is provided with a set of high-level message-
passing routines which can be used to connect multiinstanced heterogeneous programs in a
system. The SPE library routines hide the intricacies of how the parallel programs communicate.
The details of the connections are specified in text files. The SPE allows individual programs to
ve coded without knowledge of other parts cf the system and thus allows systems to be quickly
built, modified, or scaled without program recompilation.

At the time this report is being written, the SPE is still under development. All the signifi-
cant parts have been implemented and tested on an Intel Paragon XP/S 25. Although the current
implementation interfaces to the operating system using Intel-specific NX calls, it should be
portable to (he emerging Message Passing Interface standard or to other vendor-specific parallel
operating system interfaces based on message passing.

The SPE has been successfully used by the HyDOP project, and all newly developed HyDOP
programs are currently using the SPE. Use of the SPE has provided more rapid program devel-
opment and system integration. The current HyDOP subsystem is scalable and reconfigurable.

The SPE is also being evaluated for use in synthetic aperture radar (SAR) image-formation
processing for an ARPA-sponsored project. The goals of this project include demonstrating the
ability to perform SAR processing in real time on the Paragon in a scalable implementation
which has potential for portability to other parallel processors. It is expected that by using the
SPE, the SAR development time will be significantly reduced.

CONTENTS

EXECUTIVE SUMMARY ... ittt ittt it iiieierieens iii
LOINTRODUCTION ..ttt it ittt it i et ieae it ineesnaneieenes 1
. 2ZOUSERINTERFACE ittt it it ittt et ittt aie s inanens 4

21SYSTEMDEFINITIONFILE ittt ittt it ciie e aas 4

. 22PROGRAMDEFINITIONFILEo ii i e 7
23DATABASESTARTUPFILEo i i it cin s 9

3.0 PORT-TO-PORT COMMUNICATIONttt ittt ittt ittt ie e e e 12

3.1 PARALLEL CONNECTIONS AND DECOMPOSITION ...ttt 12
32INPUTPORTFIFOBUFFERSo i i i e 14
3.3 MESSAGE SYNCHRONIZATION . ..iivtiiiiinriininieeanennneeannss 15
34 CONTROLTYPEPORTS ... ittt ieans 15
3 S DATA FLOW i i i i it i i st i i e 16
40PROGRAMMINGINTERFACE ittt it 17

4.1 MESSAGEINTERFACE i ittt i i i cii e 17
42 DATABASEINTERFACE ... ittt it e i v 23
43 REPORTINTERFACE ... ittt ittt it ittt iieiat s 25
4.4 PERFORMANCE MONITORING INTERFACEcoiiiinee s, 27
SO USING SPE . i i it it it i i i i i i e e 28

5.1 COMPILING AND LINKING ANSPEPROGRAMo 28
S2ZRUNNINGANSPESYSTEMot it 28
APPENDICES:

A.STRIPEALGORITHM ... i i ittt et e 29
B.PREDEFINED REPORTS .. i e et e 30
C.KEY WORDS ... it ittt ittt aretase e cisesaoanstnans 31
D.PROGRAMMING CALLS ittt ittt i iiiiit it iiean e nans 32
FiGURES
. 1. Message-passing between Leterogeneous ProgramiS, «vuv v v eurnerrnnsonenaasns 1
2. Example of a System Definition file corresponding to the system shown in figure 3. .. §
3. Example showing an implementation of an acoustic receiver system. 5
4. Possible Program Definition files for the receiver system of figure 2. 8
5. Example of a Database Startupfile. il il 10
6. SIPEd OXAAITAY. . .vriettiin i iiiin ittt ttsannneseiansoranseronans 12
7. Internal message paths for communicating a 6 X4 (6 row by 4 column) afray. 13
v

8. Input port two-dimensional FIFO. it iiieiienn s 14

9. Memory addresses in two-dimensional FIFO. o it 14
10. Control signals.oiiii it i i i i et it 15
11, Example FFT program illustrating the use of the basic SPE routines. 18
12. Reuse of an SPEprogram.coviiiiiiiiiiin it titannnnneneas 18
13, Usage of portwait(). ieieiiiiiiiettanieeeranceerononnnnasosns 19
14, EOS is daisy-chained through programs A, B,and C. 20
15. Reconfiguring an outpuUt POTL. « . oottt iiier it i inanannsroannnnnsons 22
16. Reconfiguring an input port. oottt i titee et 22
17. Using a global database variable.coviiiiiiniiiiiiiieniinerennanennes 24
18. Program reuse controlled by the global database. 0L, 25
19. Specifying report() output using FRAMES mode.cociviinnt, 26

1.0 INTRODUCTION

The Scalable Programming Environment (SPE) is a programming environment and system
interface which was developed by the Hybrid Digital Optical Processor (HyDOQOP) project, spon-
sored by the Office of Naval Research (ONR-321), to help build large scalable real-time systems
in a research and testbed environment. It provides the user with the ability to build and modify
scalable systems quickly using both function- and data-domain decomposition methods.

The SPE is a data-flow parallelizer. It loads and runs heterogeneous programs on multiple
sets of nodes and provides the scalable data-path connections needed for unrelated parallel pro-
grams to communicate.

Each program in a system, or an application, executes on a set of nodes and performs a dif-
ferent function. Each node for a given program executes the same code, called an instance of the
program. Each instance of a program is expected to work on a different piece of the data for the
given program. The SPE provides the complex high-level message-passing routines which are
needed to interconnect different programs and instances of programs into a system.

Currently the parallel computing industry does not provide a standard set of high-level
message-passing routines to systematically interconnect multiinstanced heterogeneous programs
in a system, These systems must be built with the details of the message passing visible to the
application programmer. A multiinstanced program is developed having to know the intricacies
of the other programs it is connected to, how the data are shaped on the other end of the commu-
nications path, how it will control the flow of the data it receives, how it will buffer and trans-
form the data once received, and how it will present the data synchronously to multiple instances
of itself.

Figure 1a shows the level of message-passing detail that a traditionally developed multi-
instanced program sees in a heterogeneous system. Each instance of program B must be aware of
where it gets its data from. Each instance must be aware of how the data is shaped at the other
end. Each instance wili have to control the flow of data it receives (request messages). If pro-
gram B receives messages from two or more programs (not shown), then each instance will have
to guarantee that it receives all messages in the same order as other instances (controlled by the
synchronizing messages).

PROGRAM B
PROGRAM A REQUES ~

(a) Traditional view. (b) SPE view.

Figure 1. Message-passing between heterogeneous programs.

This level of message-passing detail is beyond the level that an application programmer
should have to worry about. Furthermore, it is time-consuming and prohibits prototyping large
systems or modifying existing ones. 1t has kept system designs frem emerging beyond the multi-
instanced single-program standard predominantly used today.

The SPE has been developed to hide this level of message-passing detail. Figure 1b shows
the view that an SPE program sees when communicating data. Programs communicate with each
other through ports connected by nets. Each is unaware of which program it talks to, the number
of program instances at the other end, the number of program instances at its own end, how the
data are buffered, how the flow of data is controlled, and how the data are synchronized.

Furthermore, because this level of detail is hidden from the program, new systems can be
quickly buiit and old ones quickly medified. Programs of a system can be scaled to run on any
number of processing nodes while requiring no changes to source code. Programs can be discon-
nected and reconnec.ted in different ways to modify the function of a system.

The SPE message-passing routines have also been built to utilize resources efficiently. They
have been designed to overlap processing with communication, minimize buffer space, avoid
extra copying of data, and minimize the number of messages.

The SPE also includes other features useful in a parallel programming environment, such as
dynamic run-time control of diagnostic flags, execution parameters, performance monitoring,
logging, and error reporting.

The SPE provides:

1 A loader, which allows the user to define, load and run parallel programs on scal-
able sets of nodes without the need to recompile. New systems can be built or
modified by changing a System Definition file. Systems can be easily run on vary-
ing numbers of nodes to change system performance or meet constraints of the
hardware system.

2 High-level message-passing routines to transfer daiz between programs running
on differing numbers of nodes. Multiple programs are interconnected with data-
flow-type connections, which hide the parallelism of the system within the con-
nections. The message-passing routines provide the scatter-gather-type operations
needed to pass data between programs running on differing numbers of nodes,
provide internal synchrorization controls to make messages received by programs
synchronous to every instai.c> of a program, and provide first in, first out (FIFO)
data buffers so that programs sending and receiving messages between each other
can work on different-size data blocks.

3 A debugging environment for performance monitoring, logging, and error report-
ing. Debugging a parallel aprlication requires a user interface which deals with
multiple programs and multiple instances of programs. The SPE provides
report(), a printf{)-like call, which conditionally writes to standard output based
on a run-time parameter which can be unique to each repori() call. Other routines
allow the user to view data as one image across all instances of a program.

4. A global database for the storage of symbolic names with their associated values.
Parameter values within a system can be stored through the vser interface
interactively at run time so that application code need not be recompiled when
values are changed or new ones added.

At the time this report is being written, the SPE is still under development. All the signifi-
cant parts have been implemented and tested on an Intel Paragon XP/25. Although the current
implementation interfaces to the operating system using Intel-specific NX calls, it should be

portable to the emerging Message Passing Interface standard or to other vendor-specific parallel
operating system interfaces based on message passing.

This report is organized as follows: Section 2 describes the user interface. It also describes
the input text files through which the user defines an SPE application. These files define each
SPE program, describe how they are connected to form a system, and initialize database vari-
ables that can be used by the programs. Examples are shown for each of the files, and rules are
provided describing the grammar.

Section 3 describes how parallel programs communicate through ports. Different types of
ports are described which define how data are scattered and gathered when communicated
between parallel programs. Also discussed is how data are buffered and synchronized between
programs.

Section 4 describes the programming interface. Different SPE routines are described and
examples are provided showing how they are used in typical application.

Section 5, which will be expanded at a later date, shows how to compile and run an SPE
application.

Appendix A shows the decomposition algorithm used by the SPE when gathering or
scattering data over a port. Appendix B shows predefined database variables which can be used
by the user to obtain diagnostic information from the SPE. Appendix C shows the key words

recognized by the SPE when interpreting the input text files. Appendix D defines each of the
SPE programming calls.

2.0 USER INTERFACE

The user interfaces to the SPE through a System Definition file, Program Definition files, and
Database Startup files. The System Definition file and Program Definition files describe in two
levels how each program in & system interfaces to other programs in the system, and how each
pregram interfaces to its outside world. The Database Startup files are used by the SPE to enter
variables into a global database which can be used by each program in the system.

A user loads and runs an SPE application by executing spe. As shown in this command line

description, the spe must be supplied with a path name to the System Definition file to run an
application:

% spe -pn purtition -on 0 -5 sys_def filename
{[-d database startup filename]...] [|-1 log filename]
[-ident] (-identall] [-noload] [-portmap]
{[-Dname]...] [[-Dname=def]...]

When spe starts, it reads the System Definition file and Program Definition files. From
these files, it determines the configuration of the system, and loads the programs specified in the
System Definition file outo nodes of the target hardware. spe then creates and downloads a
unique port map to each program instance in the system, which describes exactly how each pro-
gram is connected to the other programs of the system. spe then reads the Database startup files
as specified on the command line and initializes the SPE database. Once all the programs have
received their unique port map and the SPE database is initialized, the programs are ready to run.
spe interacts with the user through standard input and output.

The spe preprocesses all input files through a C preprocessor (GNU cpp). This allows for
fie inclusion and macro expansion as specified by the C language. The -Dname and
-Dname=def arguments to spe are passed directly onto the preprocessor and behave as
described in the manual pages for cpp. The format of the input files, after preprocessing, must
conform to the file formats described in the following sections.

2.1 SYSTEM DEFINITION FILE

The System Definition file defines which programs are used in a system, how many nodes
each program will run on, and how programs are interconnected. spe uses it to determine what
programs will be loaded on what nodes and to make a unique port map for each program
instance. Figure 2 is an example of a System Definition file.

The System Definition file specifies the path name to each program which is to be loaded by

spe, the number of nodes that each program will run on, and a path name to the Program
Definition file for each program which will be loaded. After reading the System Definition file,
spe then reads each Program Definition file so that it can completely determine the port map
for each program in the system. The port map describes for each program instance what portion
of the problem it will work on and how it is connected to other programs in the system. spe
determines which portion of the data each program instance will work on based on the Program

Definition file for a program and based on the number of nodes the program is specified to run
on.

/77 File: systeam/receiver

/7

// Key Word #Nodes Program Prog_Def_Path Executable_Path

[/ e e et e e
PROGRAM 1 ship "def/ship” “bin/ship”
PROGRAM 1 hydrophone "def /hydrophone” “bin/hydrophone”
PROGRAM 1 display "def/display” “bin/display”
PROGRAM 10 beamformer "def/beamformer” “bin/beanformer”
PROGRAM 15 matched_filter “def/matched_filter” “bin/matched_filter”

// Key Word Input_Port Buffer

/] e e e
BUFFER matched_filter:gain 1

TRANSPOSE beamformer:d_in
FUNNEL display:elem

// Key Word Net_list

[mm e e e e e e e e e e e e — e e e e e
NET ship:gain, matched filter:gain, beamformer:gain
NET ship:ctl, beamformer:ctl
NET hydrophona:elem, beamformer:d_in, display:elem
NET beamformer:d_out, matched_filter:d_in

Figure 2. Example of a System Definition file corresponding to the system shown in figure 3.

Figure 3. Example showing an implementation of an acoustic receiver system.

The System Definition file also specifies the net lists which connect ports of each program in
the system. Programs communicate by passing input and output data through their ports. Data
written to an output port of a program are sent to the input ports on the net list to which the out-
put port is connected. A program is unaware of where its data go or wheie the data come from.
This basic principle of the SPE allows users to build modular systems which can be quickly
modified or extended to meet the changing needs of an application, and also promotes the reuse
of software when new applications are buiit.

The System Definition file also specifies whether the data received by an input port need to
be transposed, funnelled, or additionally buffered to meet the input requirements of a program.
Data must be transposed when two connectcd programs need to process their data along different
decomposition lines (such as in a two-dimensional fast fourier transform (FFT)). Data must be
funnelled when an input port coiisumes less data than is provided by the output port to which it
is connected. Additional buffering on an input port may be needed to improve efficiency by
increasing the amount of data the port can store.

The System Definition file of figure 2 is graphically represented in figure 3. Each box repre-
sents a different program in the system, with a number in the lower right-hand corner indicating
the number of nodes it runs on. Each box has named ports through which it communicates data
to other ports on its net. Input ports which are additionally buffered, transposed, or funnelled
have an attached bubble containing an integer, the letter “T” or the letter “F,” respectively.

The rules for making a System Definition File are as follows:

1. Tabs and blanks are white spaces and are used to delimit lines into tokens inter-
preted by the parser. Tokens are either key words, identifiers, integers, or strings.
Backslash (\) can be used to continue the end of a line. The rest of the line after a
double forward slash (//) is ignored as a comment.

2. Tokens are either key words, identifiers, integers, or strings. Key words which
can be used in the System Definition file include PROGRAM, BUFFER, FUNNEL,
TRANSPOSE, NET, and NA, and may be written in uppercase or lowercase letters.
Identifiers must be an allowable C language identifier, up to 31 characters, and
cannot include any of the key words found in Appendix C. Strings are enclosed in
double quotes.

3. Each line must begin (ignoring white spaces) with PROGRAM, BUFFER,
FUNNEL, TRANSPOSE, or NET. These key words determine the format of the
rest of the line,

4. Each line starting with PROGRAM specifies a program used in the system. The
first field is an integer specifying the number of nodes the program runs on. The
second field is an identifier specifying the symbolic name by which the program
will be referenced in other parts of this file and the Database Startup files. The
third field is a string that specifies the path name to the Program Definition file,
The fourth field is a string that specifies the path name to the executable which
runs on the nodes. The path name can include program arguments (separated by
spaces within the string).

5. Each line stariing with BUFFER specifies an input port that needs extra buffering
to store data received on that port. The amount of buffering needed is expressed
in integer blocks of input data (defined by the input port).

6. Each line starting with TRANSPOSE specifies an input port that must have its
data transposed when received.

7. Eech line siarting with FUNNEL specifies an input port that wiii consume less
data than produced by the output port it connects to. A variable in the database -
will control what subset of the data is actually passed.

8. Each line starting with NET specifies a list of ports which are connected together
in a net. Ports are formatted as program:port, where program and port are
replaced by identifiers. The first port in a net must be an output port. The
remaining ports must be input ports. Ports do not have to be connected to a net.
(There is an SPE call that can check if a port is connected, portisconnected().)

9. Control ports can only be connected to Cont rol ports. (Control ports will
be described later in Section 3.4.)

10. The rows dimension of all nontransposed and nonfunnelled input ports on a net
must agree with the output port to which it connects. The rows dimension of all
transposed input ports on a nct must agree with the columns dimension of the
output port to which 1t connects. The rows dimension of all funnelled input ports
on a net must be less than or equal to the rows of dimension of the output port to
which it connecte. (The rows and columns dimensions of & port are described
later.)

2.2 PROGRAM DEFINITION FILE

The Program Definition files define each program’s input and output. They are used, along
with the Systern Definition file, to make a unique port map for each program and instance in the
system. Each Program Definition file defines only the input and output for its own program.
There is no information in it defining what the program is connected to. For each use of a pro-
gram in a system, there can be a different Program Definition file.

A Program Definition file defines each port of a program. A port is defined by its direction,
configuration, type, array size, element size, stripe overlap, and block overlap.

The port configuration labels the port’s definition as a configuration of the port. A port can
have multiple definitions, with a different configuration label for each. The configuration label is
used by the program to <o dynamic reconfiguration of the port at run time (see Section 4.1.6).
Each configuration for a port must be specified on a separate line.

The port direction indicates whether a port is an input or output port. Other fields of a port’s
definition can or cannot be specified, depending on its direction.

The port type describes whether or how data will be decomposed among a program’s
instances when data are received or sent from a program, how the data will be buffered between
programs, and how the flow of data will be controlled between programs. The port type can be
defined as striped, replicated, or control (see Section 3.0 for a description of each).

The port array size defines the size of the data a port receives or sends. It is specified only
for replicated and striped port types. If specified, it defines a port by two dimensions, rows and
columns. It need not actually be two-dimensional, but to the SPE it must be described as such
(le., {11011, [211[5], and [5] [1] are valid).

The port array size defines the size of the data before decomposition. That is, if the port is
stripey, then each instance of a program will see only its portion of the data. If the port is repli-
cated, then each instance will see all the data. For striped ports, the data are decomposed across
rows of the array (see Seciion 3.1).

If a port is replicated, then the rows dimension can be any value. If it is striped, then the
number of rows must be greater than or equal to the number of program instances.

The port element size defines the size of each element of the data when the port array size is

specified. The port element size will vary depending on the data which are processed (i.e., com-
plex, real, etc.).

The port stripe overlap defines how many rows of overlap to use when decomposing data
across a sfriped input port. For striped ports, the SPE decomposes the data across rows of the
array. When the data are overlapped adjacent program instances share common rows of the data
between them. The port stripe overlap can be specified only for input striped ports. Appendix A

specifies the algorithm used for decomposing overlapped and nonoverlapped data over program
instances.

Shown in figure 4 are examples of Program Definition files that could have been used in the
receiver system example in figure 3,

// File: def/besamformer

/7 Config_ Direc Array Elem_ Striped Block_
// Key Woxd Port uration tion Tyne Size Size ovilp ovlp
S e
PORT gaan standard INPUT REPLICATED ({1][i024] 4 NA 0
PORT ctl standard INPUT CONTROL NA NA NA NA
PORT d_1n standard INPUT STRIPED [100)(1024]) 8 0]
PORT d_out high_res OUTPUT STRIPED {100)[512) 8 NA NA
PORT d_out low_res OUTPUT STRIPED [50]) [512] 8 NA NA
// File: def/hydrophone
124 Config_ Direc Array_ Elem Striped_ Block_
// Key Word Port uration taion Type Size Si1ze Ovlp ovlp
] e m
PORT elem standard QUTPUT STRIPED [256) (100} 8 NA NA
// File: def/ship
/7 Config_ Direc Array_ Slem_ striped_ Block_
// Key Vord Port uration tion Type Size Size ovlip ovlp
A e
PORT ctl standard QUTPUT CONTROL NA NA NA NA
PORT gain standard QUTPUT REPLICATED (1)[1024] 4 NA NA
N // File: def/display
- // Config_ Direc Array_ Elem_ Straiped_ Block_
// Key Worc Port uration tion Type Si1z2@ Size Oovip Ovlp
[e e e e e e e e e e e e e e e e e e T — —mm m e e el -
PORT «lem standard INPUT STRIPED 14)(512) 8 0 0
// File: def/matched filter
L /7 Config_ Direc Array_ Elem_ Striped_ Block_
e // Key Word Port uration tion Type Size Size Ovlp Oovlp
Lo /] e e e e e e em e ;e et e m——————————————
o PORT d_in high_res INPUT STRIPED [1001{2048] 8 4 0
L PORT d_1in low_res INPUT STRIPED [50] [2048] 8 4 0
i.;. PORT galn standard INPUT REPLICATED (1) (1024)] 4 NA 0

Figure 4. Possible Program Definition files for the receiver system of figure 2.
The rules for making a Program Definition file are as follows:

- 1. Tabs and blanks are white spaces and are used to delimit lines into tokens inter-

s preted by the parser. Tokens are either key words, identifiers, integers, or strings.
Backslash (V) can be used to coniinue ihe end of a line. The rest of the line after a
double forward slash (//) is ignored as a comment.

2. Tokens are either key words, identifiers, integers, or strings. Key words which
can be used in Program Definition files include PORT, INPUT, OUTPUT,
STRIPED, REPLICATED, CONTROL, and NA, and may be written in uppercase
or lowercase letters. Identifiers must be an allowable C language identifier, up to
31 characters, and cannot include any of the key words found in Appendix C.
Strings are enclosed in double quotes.

3. Each line starting with PORT specifies the definition of a port. The fields are
Port, Configuration, Direction, Type, Array Size, Elem Size, Striped Ovip, and

Block Ovip. When a field is not allowed to be specified, it must contain Na, for
“not applicable.”

4. The Port field is an identifier specifying the name by which the port will be
referenced.

5. The Configuration field is an identifier which identifies the port definition as one
configuration of the port. It must be unique for every definition of the port. The
first definition of a port is the configuration which the SPE uses at load time. Al-
ternate configurations for the same port must have the same values for port Direc-
tion and port Type. All other fields can be different.

6. The Direction field must be specified as INPUT or OUTPUT.
The Type field must be specified as CONTROL, STRIFED, or REPLICATED.

8. The A4rray Size and Elem Size fields must be and can only be specified for striped
and replicated ports. The format for the Array Size {ield when specified is
[rows] [columns], where rows and columns are integers. The Elem Size
field is the number of bytes for each element.

9. The Striped Ovip field must be and can only be specified for input ports that are
striped. It must be an integer less than the number of rows of the input data.

16. The Block Ovip field must be and can only be specified for input ports that are
striped or replicated. It must be an integer less than the number of columns of the
input data. Usage of the Block Ovlp field will be described later in Section 3.2.

2.3 DATABASE STARTUP FILE

The SPE provides a global database to store symbolic names with their associated values.
Programs are able to use the database ‘o store such things as signal processing parametess, func-
tion control and switches, display parameters and control flags, and report and logging flags.
Typically these values are found in include files and are shared among programs. If instead they
are stored in a global database, then when the values are changed or new ones added entire sets
of programs need not be recompiled.

™~

The other uses of the global database are to communicate values from the user interface to a
program or from one program to another. From the user interface, symbolic names and their
associated values can be assigned to different programs or to specific instances of programs. For
example, one may want to set a debugging or logging flag for a specific instance of a particular
program, or may want to set a program variable to different values for each use of the program
{(i.e., a program which can do multiple functions).

A program can also store or access data in the database from the program interface. How-
ever, unlike the user interface, a program cannot assign a variable to a specific program or
instance of a program. When a program sets a variable in the database, it applies it to all
programs which have registered the use of that variable.

Programs tell the database that manager they are interested in a variable by registering for it.
When a variable in the database is modified via the program interface, that variable is updated
automatically in all programs which have registered for it. This means that programs within a
system can be developed withcut having to know the requirements of other programs. Details
about the program interface will be discussed later in Section 4.2.

The user interface allows the user to provide to spe a list of Database Startup files, which
contain an initial set of symbolic names and associated values for the system. The user can also,
through the course of a run, provide new names and values, or modify existing ones.

The Database Startup files contain a list of variables and associated values used by different
programs in the system. Because a system is a set of programs, and each program is a set of
instances, a symbolic name can have a different value for each program and instance in a system.
Each line in the Database Startup file allows a variable to be assigned to all instances of a specif-
ic program, to a specific instance of a program, or to all instances of all programs. The same

variable can be specified more than once (on a different line). An example of a Database Startup
file is given in figure 5.

// File: database/receiver
/7

// Key Word Name Type(Value) Program{instance)
[/ e e e e e e e e e e nm——a—
VAR number_of_widgets 100 diaplay //integer
VAR narrow_band TRUE matched_filter //integer
VAR speed_of_ sound 1500.0 //floating-point
VAR input_filename “sea_testl” hydrophone //string
VAR debug_stuff OFF beamformer //report
VAR interesting_vars FRAMES, gain, 2,5 peamformer (0) //report
VAR FUNNEL.display.elem 4,47,81,89% //funnel

Figure 5. Example of a Database Startup fiie.

The type of value which can be assigned to database variables are integer, floating-point,
string, report, and funnel. Integers must be specified either as an integer without a decimal point
(e.g., 100) or as TRUE or FALSE. Floating-point values contain a decimal point (e.g., 1500.0)
or an exponent (e.g., 1e+3) or both; their type is internally represented as a double. Strings are
enclosed in double quotes (e.g., “‘sea_testl”). report is a special type which is specified either as
ON or OFF or as a list of four components: FRAMES, portname, startframe, and endframe.
funnel is a special type which is specified as a list of integers. The report and funnel types will be
explained in more detail in later sections. With the axception of the special types, structures or
arrays cannot be assigned through the user interface to variables in the database.

The rules for making a Database Startup file are as follows:

1. Tabs and blanks are white spaces and are used to delin:it lines into tokens inter-
preted by the parser. Tokens are either key words, identifiers, integers, or strings.

Backslash (\) can be used to continue the end of a line, The rest of the lirie after a
double forward slash (/) is ignored as a comment.

2. Tokens are either key words, identifiers, integers, reals, or strings. Key words
which can be used in Database Startup files include VAR, TRUE, FALSE, ON,
OFF, FRAMES, and FUNNEL, and may be written in uppercase or lowercase let-
ters. Identifiers must be an allowable C language identifier, up to 31 characters,
and cannot include any of the key words found in Appendix C. Integers must be
specified either as an integer without a decimal point (e.g., 100) or as TRUE or
FALSE (defined as 1 and O, respectively). Floating-point values contain a decimal
poiat (e.g., 1500.0) or an exponent (e.g., 1le+3) or both; their type is internally
represented as a double. Strings are enclosed in double quotes.

. Each line starting with VAR declares ar.d initializes a variable to be put in the SPE
Database. The first and second fields specify the variable name and value. The
value specified must be of the type integer, floating-peint, string, report, or
funnel. The last field optionally specifies the program or program and instance the
variable is intended for. It can be left empty, indicating that the variable is
intended for everyone, or contain a program name, indicating that the variable is
intended for all instances of a program, or contain the specific program and
instance the variable is intended for. Program names must match those used in the
System Definition file. If the variable type is funnel, then the last field is not
specified (left blank).

3.0 PORT-TO-PORT COMMUNICATION
3.1 PARALLEL CONNECTIONS AND DECOMPOSITION

The SPE allows ports to be specified as striped or replicated. These port types tell the SPE
how it should decompose the data it transfers between ports of programs of multiple instances.
When the SPE transfers data to an input port that is replicated, then all instances of the receiving
program will be given the same data. When the SPE transfers data from an output port that is
replicated, then each instance of the sending program must provide the same data. When the SPE
transfers data to an input port that is striped, then each instance will be given a different portion
of the data (can be overlapping). When the SPE transfers data from an output port that is striped,
then each instance of the sending program will provide a different portion of the data (cannot be
overlapping). The SPE can transfer data between ports of similar or dissimilar types.

The size of the data communicated over a striped or replicated port must be defined by the
user in two dimensions, rows and columns. The data do not actually have to be two-dimensional,
but to the SPE it must be described as such (i.e., [1J[1], [1][5], and [5][1] are valid). When the
SPE transfers data to a striped port of a program of multiple instances, it divides the data along
its row dimension. The data are not decomposed across the column dimension. The algorithm
divides the data as equally as possible into row-contiguous portions (see Appendix A.). Figure 6
shows how a 6X 4 array of data would be striped across programs of 3 and 2 instances.

¢ 1 23 01 23

0 INSTANCE O 0

1 4 INSTANCE 0
2

2

3 INSTANCE 1
3

4 4 INSTANCE 1

5 INSTANCE 2 5

{a) 3 Instances. (b) € 'stances.

Figure 6. Striped 6 X 4 array.

When communicating data between programs, the SPE must know how the data are decom-
posed at the sending and receiving ends of a connection. For & simple two-port connection, the
SPE must be able to handle cight basic types of connections: striped-striped, striped-replicated,
replicated-striped, replicated-replicated, striped-transposed-striped, striped-transposed-
replicated, replicated-transposed-striped, and replicated-transposed-replicated. Figure 7 shows
what the communication paths might be for each type of connection. The examp:es show the
sending program running on 3 nodes and the receiving program running on 2 nodes. The data i
which are communicated are in a 6 X4 array. The extent of the data communicated on each path
is shown as {rows][columns]. i

One can see that even for these simple cases, the level of detail is quite complex. The SPE
for each program instance must know where it is sending or getting its data and how it will scat-
ter or gather its data. Each instance within a program will operate differently to communicate its
portion of the data. Also, if the sending or receiving programs are scaled to run on a different
number of nodes, or if additional ports are added to the net, then the paths will change.

[0-1](0-3]

[2](0-3)
{3]{0-3)

[4-5){0-3)
(a) Striped-striped.

{0-5)(0-3]

[0-5){0-3)

{d) Replicated-replicated,

(0-5}(0-1)

[0-5)(2..3]

(@) Replicated-iransposed-
striped.

[0-1)[0-3]

{2-3j[0-3]

[4-5}{0-3)
[4-51{0-3)

(b) Striped-replicated.
(0-13l0-1)

[0-1){2-3)
[2-3)f0-1}

[4-5){0-1)
[4-5102-3)

(e) Striped-transposed-striped.

{0-5}{0-3)

[0- 5}{0-3]

(h) Replicated-transposed-
replicated.

[0-2)t0-3)

[3-5)[0-3]

(<) Replicated-striped.

(0-1){0-3)

(2-31(9-3) .
[4-5(0-3) ’ =%

(D Stripsd-transposed-
replicated,

Figure 7. Internal message paths for communicating a X 4 (6 row by 4 column) array.

A program should not have to deal with this level of detail, and indeed this is something
which is provided for and kept hidden by the SPE. A program should not be concerned with
where it is getting or sending its data, how the data is decoinposed at the other end, or even what
instance of the program it is. The only thing a program should need to know is what portion of
the data it works on and must produce.

Output and input ports can also be connected through funnels. A funnel connects an input
port to an output port whose row dimension is greater than its own dimension. The user specifies
in a Database Startup file which rows of data are actually passed between the sender and
receiver. There are four types of connections which can use a funnel; striped-funnelled-striped,
striped-funnelled-replicated, replicated-funnelled-striped, replicated-funnelled-replicated.
These are connected with the same type paths as the nontransposed-type connections shown

earlier. Funnel and transpose connections cannot be used together.

To specify what rows are connected through a funnel, the user must create & database vari-
able of the name FUNNEL.program.port, where program and port are replaced by the program
name and input port name to which the funnel is attached. The user assigns to this variable an
array of integers containing the row indices of the data which are connected through the funnel.
The number of integers specified must be equal to the row dimension of the input port. Shown
below is the funnel database variable which was used in our example system:

VAR FUNNEL.d .splay.elem 4,47,81,89

13

3.2 INPUT PORT FIFO BUFFERS

Another feature that the SPE provides is that two programs interconnected can work on
different-size data blocks. The SPE requires that the row dimension of each input port on a net
agree with the output port to which it connects, but allows the column dimension of each to be
different. The SPE can allow this by providing a FIFO buffer on each input port which stores the
data when the data are received. The FIFO buffer is a two-dimensionel buffer which performs
the FIFO operation along the columns dimension of the buffer. Since the communicated data is
two-dimensional, the FIFO buffer must also be two-dimensional. Figure 8 shows the operation
performed by the FIFO buffer.

NEXT BLOCK PUT ON FIFO '—'\

@ 90 o o o . . }ROWS

e a0 00 —

COLUMNS

e NEXT BLOCK HEMOVED FROM FIFO

Figure 8. Input port two-dimensional FIFO.

The implementation of two-dimensional FIFO buffers is not straightforward because the
physical memory of a computer is accessible in only one dimension (every memory location is
accessed by one address). To understand this point, consider figure 9.

0y 1213 12f 13] 14| 15
o 06 0 & & 45|67 16{ 17| 18| 19| w—— NEXT BLOCK ADDED
8| 8j10] 11 20f 21} 22] 23
0] 1) 2 3112113
NEXT BLOCKREMOVED—* | 41 5| 5 71 16] 17 e ¢ © ¢ O
819110 11] 20| 21

Figure 9. Memory addresses in two-dimensional FIFO,

The 3 X4 element boxes at the top of the figure represent the data being put inte the FIFO
buffer. The 3 X3 element boxes at the bottom of the figure represent the data being removed
from the FIFO buffer. (Looking back at figure 7a, we see this represents the data sent along the
top two paths.) The number in each box represents the address where each element is stored.
One can see that if the elements of the input FIFO blocks are stored contiguously in memory,
then the elements of the output FIFO blocks will have to be read from noncontiguous memory
locations. For instance, the first block removed is read from addresses 0, 1, 2, 4, 5, 6, 8,9, and
10. Once again, this level of detail is beyond what an application program should be concerned
with and 1s a feature provided by the SPE.

The SPE also allows the blocks of data taken from a FIFO buffer to overiap. The amount of
overlap is specified for each input port in the Program Definition files. The Block_Ovip field

specifies for a given input port the number of columns each block of data will overlap when
removed from the FIFO buffer.

Another important benefit that a FIFO buffer provides is that it allows a program to overlap
communication with computation. For example, when a program is working on a block of input
data, it can also be receiving in its input FIFO buffer future blocks of data. Thus, when it
finishes working on the current block of data, it is ready to start to work on the next. The SPE
provides the internal control signals sent between the receiving and sending programs to keep
the RIFO buffers full.

3.3 MESSAGE SYNCHRONIZATION

There are still other issues concerning data communication besides how the data are con-
nected or buffered. In parallel processing, where multiple instances of a program work on a
problem, the data seen by each instance of the program must be coherent. Messages received by
each instance of a program must be received in the same order. The SPE guarantees that for pro-
grams having multiple input ports, the messages received over those ports will be received in the
same order by each instance of the program. This is an obvious requirement for a program that
receives data from multiple programs which operate asynchronous to each other.

Figure 10 shows the control signals used by the SPE to provide the message-passing
synchronization needed between program instances and to buffer the data between sending and
receiving programs. The request lines from program B to program A indicate that the FIFO
buffers in B are ready for more data and also indicate how empty they are. The sync lines from
BO to B1 and B2 indicate the order in which BO has received its messages. B1 and B2 use this
information to force their messages to be received by the user’s program in the same order.

REQUEST
(s (=)
REQUEST

0' DATA [B

REQUEST SYNC
O=—~0

Figure 10. Control signals.

3.4 CONTROL TYPE PORTS

In the Program Definition files, ports can be specified as control type. Control ports are pro-
vided to allow programs to communicate data which are not a part of the normal data-flow
stream of the system. Data sent over a control port do not have specifications for array size,
element size, stripe overlap, or block overlap. When the composition of data sent betwee pro-
grams is irregular (cannot be specified as a two-dimensional matrix) or is unknown, then the
data must be sent via controi ports. Control ports by definition are replicated and can only be
connected to other control ports. Control ports are connected like the replicated-replicated con-
nection shown in figure 7d (ignoring the dimensions of the data). .

15

3.5 DATA FLOW

When a sending program puts data on an output port, it biocks until the SPE has sent the data
to all the input ports it is connected to. The SPE will send the data to each input port as space is
made available in the port’s input FIFO buffer. When all the input ports have received the data in
their FIFO buffer, the SPE returns control to the sending program.

When a receiving program gets data from an input port, it blocks until the data become avail-
able in the port’s input FIFO buffer. When enough data have been collected in the FIFO buffer to
satisfy the input request, the SPE will transfer the data to the user’s buffer and return control to
the receiving program.

Internally the SPE controls the flow of data by having the receiving program tell the sending
program when it can send more data. Just before the SPE returns control to the receiving pro-
gram, 1t makes a decision of whether or not to let the sending program send more data. If the
receiving program has room in its FIFO buffer for more data from the sending program, it tells
the sending program how much more data to send. While the data are being sent, the SPE
returns control to the receiving program, allowing it to work on the current buffer of data. The
cycle repeats itself each time the receiving program gets data.

This method of flow control provides the programmer with a simple decentralized method
for synchronizing programs. Each program does not have to know about the requirements of the
programs it is connected to or have to generate control signals to control the flow of data it con-
sumes or produces. The control signals are handled internally by the SPE. Each program simply
receives and produces data as fast as it can go. The double buffer process described above allows
a receiving program to work on data while the SPE sends data for the next cycle.

4.0 PROGRAMMING INTERFACE
4.1 MESSAGE INTERFACE

4.1.1 spe_init(), portsend(), portrecw(), portid(), portinfo()

The first SPE routine called must be spe_init(). This routine blocks until the calling program
receives from the SPE loader the port map and a set of database values specific to the program
instance. From the port map, the spe_init() call determines and allocatss the resources needed to
perform the message-passing operations used later in the program.

Messages are passed between programs with the portsend() and portrecy() system calls.
These calls perform the special scatter and gather operations needed to transfer data between
multiinstanced programs. With them, each instance of a program will send or receive striped or
replicated portions of the data (see Section 3.1).

Programs communicate through ports, avoiding the need for a program to know where it is
sending or receiving its data. The portsend() and portrecv() system calls require the caller to
provide the port /D of the port to send or receive data. The port ID of a named port is returned
by the portid() system call. Port IDs are assigned by the SPE interface and must be used when
referring to a port.

The portion of the problem that an instance of a program works on can be found from the
portinfo() system call. The portinfo() routine copies to the supplied address information describ-
ing the portion of data which are striped or replicated for the given port and instance. The calling
program instance uses this information to determine the portion of data it will work on and to
allocate buffers for receiving or sending the data. The celling program must be written so that
each instance of it can work on any contiguous-row portion of the data.

These routines and db_waii(), which will be described iater, represent the minimum set of
routines that must be used by a program (both portsend() and portrecv() do not have to be used).
An example program using each of these routines is shown in figure 11.

4.1.2 Message Interface Example

The program illustrated in figure 11 repeatedly performs FFTs on blocks of input data. The
input data blocks can be of any size, but must remain fixed over time. Each block of input data is
received on port “in” and each FFTed block of output data is sent to port “out”. The program
repeats itself forever until the SPE system shuts down.

The program is written so that it can be implemented over any number of instances.
Resources, such as the buffer space used to receive input messages, are allocated at run time,
Careful use of the portinfo() routine is critical to developing a flexible general-purpose program.
The program is written so that it can work on any size deta block (rows vs. columns), thus maxi-
mizing the reuse of the software.

Figure 12 shews how quickly an application can be built by reusing software. The two-
dimensional FFT in figure 12b was constructed by simply connecting two copies of the one-
dimensional FFT through a transposed connection. No new software was developed.

File: fft.c

L]
*
* Description: Performs FFTs on rows of input matrix (rows X columns).

* The FFT 81ze 18 equal to the number of columns in the matrix.
* The rovws of the input matrix are estriped over the program

* instances. For example 1f the input matrix is 100 x 128 then
* a 128-pt FFT will be performed on each row of the matrix.

*/

#include <spe.h>

leng ii, no_rows, fft_size, port_id, in_pid, out_pid, status;
COMPLEX *buffer;
size_t buffer_size; -

PORT_INFO in_port_info;

void main{)

{
/* Initialize the SPE interface */
spe_init();

/* Register and assign database variables here. */
db_wait(); /* Explained in "Database Interface” */
/* Gaet the port IDs of poris "in” and “out” */
in_pid = portid(”in”);

out_pid = portid(”out”);

/* Datermine what portion of the problem this instance will work on. */
portinfo(in_pid, &in_port_info);

no_rows = 1n_port_info.end _row -
in_port_anfo.start_row + 1;
fft_size = in_port_info.no_columns;

/* allocate space for the input data. */
buffer size = (size_t) (no_rows * fft_size * s1ze0f(COMPLEX));
buffer =~ malloc(buffer_size);
/* Loop forevar until some other program terminates the run. */
while (1)
{

portrecv(in_pid, buffer, buffer_ size, i(status);

for (11 = 0; 11 < no_rows; 11it++)

cift (buffertir*fft_size, fft_size, 1); /* buf,size, l=forward */

portsend(out_pid, buffar, buffer_size);

Rigure 11. Example FFT program illustrating the use of the basic SPE routines.

(a) One-dimensional FFT. (b) Two-dimensional FFT.

Figure 12. Reuse of an SPE program.

4.1.3 portwail(}, portprobe()

In the example given in figure 11, the program waits for cata on a single port. To wait fcr
data from multiple input ports (when the order of the messages is not known ahead of time), the
program must use the portwait() and portprobe() routines. The portwait() routine blocks until a
message is ready to be received on one of the input ports. Then when a message is available, the
portwait() routine returns with the port ID of the pending port. The portwait() routine always
returns the port IDs of the input messages in the order they were received. All instances of a
program are guaranteed to receive the input messages in the same order.

The portprobe() routine determines whether a message on a selected input port is ready to be
received. The programmer supplies the port ID of the input port to be checked. If port ID is -1,
then all input ports are checked. The portprobe() routine immediately returns a long value,
indicating whether the selected port has a message available to be received. If the programmer
has selected a specific port and a message is available on that port, then portprobe() returas the
port ID of the selected port. If the programmer has selected all input ports to be checked and a
message is available on one or more of the input ports, then the port ID of the message which
was available first is returned. If a message is not available to be reccived, the portprobe()
routine will return a -1.

The example program illustrated in figure 13 shows how one would use the portwait()
routine. The program does not know ahead of time the order in which messages become avail-
able over ports “inl1” and “in2.” However, it does know ahead of time that when a message
becomes available on port “in2” another will soon follow on port “in3’ (for instance, these
messages may be sent from the same program). In figure 13, the portwait() routine is used to
block the program until a message is available to be received, and then if-else statements are
used to determine from which port to get the message. When a message becomes available on
port “inl,” it is received and processed. When a message becomes available on port “in2,” it is
received and processed along with the message from port “in3.” The program does not
necessarily have to receive and process messages in the order in which they become available. In
the period that the messages on ports “in2” and “in3” are received, a message on port “inl” may
have become available.

/* Get the port 1Ds of each input port. */

inl_pid = pertid(”inl”);

1n2_pid = portid{“1n2”);

1n3_pid = portid(“in3¥);

while (1)

{
/* Wait on a message from any 1nput port. */
pid = portwait();

1f (pi1d == 1nl_pad)
{
portrecv(inl_pid, bufferl, bufferl size, &status);

}
b else :f (pid == 1n2_pi1d)
{
portiscv(1n2_pid, buffer2, buffer2 size, &status);
portreav(in3_p:d, bufferd, bufferd size, é&status);

}

elsa ...

Figure 13. Usage of portwait().

19

4.1.4 portexiis(), portisconnected()

A program which has been designed for general use may not know ahead of time how many
input and output ports it may actually have, or if it does, it may not know whetuer they are
actually connected. The routines portexists() and portisconnected() can be used to determine
these qualities. The portexists() routine returns a boolean value indicating whethe: the named
port exists. The portisconnectedy) routine returns a boolean value indicating whether the named
port is connected. Both routines must be supplied with the string name of the port of interest.
Data sent to a disconnected port will be dropped. Trying to receive data on a port which is not
connected will cause the program to hang.

4.1.5 porteos()

A program can send to an output port an end-of-stream (EOS) mark, indicating that the
program will temporarily or permanently stop the flow of data to that port. The EOS mark is
detected by a receiving program from the status argument of the portrecv() routine. The EOS
mark can be used to determine when a system is finished processing, to reroute the flow of data
through a system, or to reconfigure the ports attached to a net.

Figure 14 shows how a typical data-flow system might be connected. Program A reads data
from an input file, program B processes the data, and program C writes the processed data te an
output file. Each program executes a loop which receives, processes, and produces frames of
data. The system will run until program C writes to the output file the last frame of data which
program A produces and program B processes. When program C writes the last frame of data to
the output file, it will then initiate system termination, causing all the programs to exit.

For this to happen, program C must be able to determine when it has received the last data
that it will write. If this information is not embedded in the data, then it must use seme out-of-
band technique to determine the end of the data. For this reason, the EOS mark is provided to
indicate that the end of a stream has been reached. It provides an out-of-band way to tell the user
that the last piece of data has been read.

The EOS mark is used as follows: When program A has finished reading the input file and
has sent the last frame of data to program B, it sends an EOS mark to program B by calling
porteos(). Program B detects the EOS mark from the status information returned by the
portrecv() call and in turn calls porteos() to send the EOS mark to program C. Finally, program
C detects the EOS mark from the status information returned by the portrecy() call, closes the
output file, and initiates system shutdown.

A B c
:> ourt N OUT PN :{>L

Figure 14, EOS is daisy-chained through programs A, B, and C.

4.1.6 portbos(), portrecvbos(), portreconfigure()

A program can send to an output port a beginning-of-stream (BOS) mark, which will be sent
to all the input ports to which the net is connected. The BOS mark is used to restart the flow of
data through a net or to reconfigure the ports to which the net is connected.

The BOS mark is sent to an output port by calling portbos(). portbos() must follow porteos()
and must be called before the flow of data is restarted to a given port. The caller supplies to
portbos() a port configuration string which will be sent along with the BOS mark to the con-
nected input ports. The port configuration string tells the downstream programs how to reconfi-
gure their input port.

The BOS mark is detected by a receiving program from the status argument of the portrecv()
routine. The portrecv() routine copies the port configuration string, sent along with the BOS
mark, to a buffer provided by the caller. The receiving program uses the configuration string to
reconfigure its input port.

The portbos() routine can be used to restart a data stream in the same way that the porteos()
routine is used to stop a stream. For example, in figure 14, if program A wants to restart the
stream, it would send a BOS mark to program B by calling poribos(). Program B detects the
BOS mark from the status information returned by the portrecv() call and in turn sends the BOS

mark to program C. Finally program C detects the BCS mark from the status information re-
turned by the portrecv() call.

After a stream to or from a port is restarted (BOS) and before a program can reuse a port, the
program must reconfigure the port. A program reconfigures a port with the porireconfigure()
routine. The program supplies tc the portreconfigure() routine the string name of a valid config-
uration for the port as defined in the Program Definition file. When the portreconfigure() routine
is called, the SPE reallocates buffers and reestablishes connections to the ports to which it is con-
nected. The portreconfigure() routine can only be called after a program receives an EOS rmark
and BOS mark on a port. Valid configurations for ports can be passed along with the BOS mark,
providing an easy way for a program to get the information. The portreconfigure() routine can
also accept a null string ("), which tells the SPE to use the previous configuration.

After all programs of ports on a given net have called portreconfigure(), the SPE will redo
the decomposition for each port and establish new internal communication paths connecting
those ports (see Section 3.1). The SPE will make sure that the new port definitions are consistent
with each other, using tke same requirements as those for the System Definition file (see Section
2.1). Because the SPE redoes the decomposition for each pert, each program and instance
affected will have io recall the portinfo() routine to find out what portion of the new problem it
will work on. Each will have to free() the memory used by the old message buffers and malloc()
new memory for the new message buffers.

Figure 15 is an example of an upstream program reconfiguring one of its output ports to
handie “big FFTs.” The program calls in order the porteos(j, poribas(), portreconfigure(), and
portinfo() routines. The program reconfigures the output port so that it will now handle big FFT-
size data blocks. The string message sent in the portbos() routine tells the downstream programs
how to reconfigure their input port.

lona out_pid;
PORT_INFO out_port_info;

/* Send EOS mark to downstream process. */
porteos (out_pid);

/* Send BOS mark to downstream process. Tell it we’xe reconfiguring the
* system to “big FFTs”.
*/
portbos (cut_pid, /* port ID */
“big_£ffts”); /* new port configuration */

/* Reconfigure our cutput port */ .
portreconfigure (out_pid, /* port ID */
"big_f£fts”); /* New port configuration. */

/* Determine what portion of the problem this instance wili work on. */
pertinfo(out_pid, &out_port_infe);

Figure 15. Reconfiguring an output port.

Figure 16 is an exampie of a corresponding downstream program reconfiguring one of its
input ports to match the upstream port to which i. is connected. The program calls in order
portrecv(), portrecv(), portreconfigure(), and portinfo() to get the EOS mark, to get the BOS
mark, to reconfigure the input port, and to determine the new portion of the problem it will work
on. After calling the portinfo() routine, it frees memory used by the old ut buffer and allo-
cates memory for the new input buffer. The program must also recompute \not shown) the num-
ber of rows of data it will do next and the new FFT size.

long in_pid, status;
CFGNAME_TYPF in_port_cfg
PORT_INFO in_port_info;

s

/* Get next data buffer from upstream process. */
portrecv(in_pid, in_buf ptr. in_buf_size, &status);
if (status == EOS)
{
/* Gat BOS mark from upstream process. */
portrecv(in_pid, in_port_cfg, 0, &status);
if (status != BOS)
{

/* ERROR: 7Tell user that BOS didn’t follow EOS. */
lelse

{
portreconfigure(in_pid, /* Port ID */
in_port_cfg); /* New port configuration */

/* Determine what portion of the problem this instance will work on. */
portinfo(in_pid, &in_port_info);
/* free memory used with old configuration. */

tree(in_buf_ptr);

/* allocate memory uscd in new configuration. */ -
in_buf_ptr = malloc(...);

Figure 16. Reconfiguring an input port.

4.2 DATABASE INTERFACE

As described earlier, the SPE provides a global database to store symbolic names with their
associated values. Variables can be stored and read from the database through either a user or
program interface. This section describes the program interface.

The program interface, unlike the user interface, does not consider a variable to have a spe-
cific destination. That is, a program cannot specify that a variable should contain different values
for different programs or instances of programs. This is consistent with the SPE philosophy that
a program need not know about the existence or requirements of other programs in a system.

A program interfaces to the SPE database by first registering each variable that it will access
from the database. When a program changes a variable’s value in the database, then & copy of
that variable propagates to all programs which have registered for it. This method for maintain-
ing global data was chosen to maximize system performance. Alternatively, the giobal database
could have been desigred so that each time a a variable was stored to the database, it propagated
to all the programs, regardless of which program wanted it. Or even worse, it could have been
required that each time a program wanted to use a variable in the global database, it would have
to make a request. In either case, the global database manager increasingly becomes a bottleneck
as the number of programs in a system increases.

When the SPE interface on a program receives a new value for a database variable, it waits
before updating the local copy of the variable. It must wait to make sure that when the local
copy is changed, the program is not in the middie of accessing it, because certain variables, such
as strings or structures, may require atomic access. Also, it must wait to make sure that each
instance of a program sees the local copy changed at the same time. For this reason, the follow-
ing algorithm is used to determine when the local copy is updated: If the program is executing
on one node, then the local copy of the variable will be updated during the next SPE system call.
If the program is executing on multiple nodes and has input ports, then the local copy of the
variable will be updated inside the next portrecv() system call. If the program is executing on
multiple nodes and has only output ports, then the local copy of the variable will be updated
inside the next portsend() system call. portrecv() and portsend() are allowable update points
because the SPE receives database variables as if they were port messages. It guarantees that
database varia! le updates and port messages are received in the same order by each instance of a
program.

4.2.1 db_register(), db_se!(), db_wait()

Three routines are used by a program to interface to the global database. A program calls the
db_register() routine to tell the database manager that it is interested in a variable. The program
then supplies to the routine the string name of the database variable, an address in memory
where the local copy of the variable will be maintained, an enumeration indicating the type of
variable that it expects, and the size of the variable in bytes. The contents of the local copy of the
variable are not sent to the database manager. When a program registers a variable, the global
database manager sends the value of the variable to the program if it has already been set. If the
program has already called the db_wait() routine (described later), then the value is immediately
copied to the program’s local copy of the variable. If the program has not yet called the
db_wail() routine, then the variable is updated later when db_wait() is called.

A program sets the value of a datahase variable by calling the db_set() routine. It supplies to
the routine the string name of the database variable, the address in memory where the value will
be copied from, an enumeration indicating the type of variable being stored, and the size of the
variable in bytes. When the value of a database variable is set, its value is propagated tc all pro-
grams which have registered for it.

After a program has registered or set all database variables critical to system startup, it calls
the db_wait() routine. This routine is a system-synchronizing routine which waits until all pro-
grams in the system have also called db_wait(}, indicating that they too have registered or set
database variables critical to system startup. This routine must be called regardless of whether a
program registers or sets database variables. The db_wait() routine also updates local copies of
the database variables which were set after they are registered.

The example in figure 17 shows how one might use the global database to make the FFT
program more gereral purpose. The program uses the global database variable “forward_fft” to
determine whether it should perform a forward or reverse FRT. The variable would be set from a
Database Startup file or Program Definition file where it could be set differently for each usage
of the program. The FFT program (or any program in the system) must make sure that it does
not set a value to this database variable, thus propagating the same value to all usages of the
program (different prograias may be asked to de different-size FFTs). So in this case, it might be
wise to make the database variable name more unique to the function of the program.

void maan{()
{

BOOLEAN forward_fft = TRUE; /* Default: forward FFT */
spe_init();

/* "forward fft” will be set in the Database Startup file. */
db_register(”forward_fft”, &forward_fft, DB_INT, sizoeof(BOOLEAN));

/* Wait for other programs to register or set database variables.
* Update local copies of the database variables. */
db_wait ();

while (1)
{
poxrtrecv{in_pid, buffer, buffer_size, &status);

for (1i = 0; ii < no_rows; 211++)
1f (forward_f£ft)
cfft (buffer+i1*fft_size, fft_size, 1l); /* Forward FFT */
alse
cfft(buffer+ii*fft_size, fft_size,-1); /* Reverse FFT */

portsend(out_pid, buffer, buffer_size);

Figure 17. Using a global database variable.

Figure 18 shows how one might use the new FFT program to build a simplified beamformer.
Also shown is the Database Startup file that controls whether each program does forward or
reverse FFTs. One can see how quickly a system can be built by reusing software.

Extending this concept of reusable software, one might build a general-purpose processing
module which could perform any of the functions found in a standard vector-processing library.
A global database variable would determine how each usage of the processing module within a
system would function. For instance, the string database variable “libxx_function” could be used
to determine if the libxx.c program would perform an FFT, correlation, or vector magnitude
function. From the Database Startup file, one could specify a different function for each use of
the program.

{a) System diagram.

// Filae: database/beamformer

// Key Word Name Type (Valueg) Program(instance)
/S mmmmm e e e scm s e
VAR forward_fft TRUE frel
VAR forward_fft TRUE ffe2
VAR forward_fft FALSE ffe3

(b) Database Startup file.

Figure 18. Program reuse controlled by the global database.

4.3 REPORT INTERFACE

Debugging a parallel application requires that the user deal with multiple programs and mul-
tiple instances of programs. Using the traditional printf{) statement to trace the progress of an
application is not practical because of its replicated use when called from programs implemented
on multiple nodes or from common modules used by multiple programs. Because of its repli-
cated use, when printf{) writes to standard output, the user gets more information than bargained
for (e.g., 50 repetitions of the same message), and in addition, does not know which program or
program instance has generated each output. (Also, on the Paragon, when more than one printf()
is used simuitaneously, their results fragment and mix to the standard output.) What is needed
instead is a routine which acts like printf{) but which conditionally executes based on conditions
that the user can control.

4.3.1 repory)

The SPE provides to the programmer the report() system call. The report() system call func-
tions the same as the prinif() system call except that it requires one extra argument. The first
argument to report() specifies a report category variable in the global database that report() will
use at run time to determine if it should actually write the data to standard output. Report catego-
ry variables are created by the user, through Database Startup files, to control which report!)
calls write to standard output. Each use of report() can refer to & different report category vari-
able, but through careful selection of categories and placement of repori() calls, one can create
an effective debugging environment. The other arguments to report() look the same as that used
in printf().

25

Report category variables are created by the user. Through them, the user telis the application
which categories of reports it wants to see, for which programs and instances, and for what range
of time (time is dictated by range of messages over a specific port). Shown below is how a
report category variable is internally constructed in the SPE:

typedef enum {OFF,ON,FRAMES} MODE;
typedef struct {

MODE mode;)
char port_name[32];

long start_frame;

long end_frame} RZPORT;

The mode field tells report() which mode to use to determine if it should write to standard
output. If mode is OFF, then report() will not generate output. If mode is ON, then repor(} will
generate output for the selected program and instance each time it is called. If mode is FRAMES,
then report() will generate output between the times determined by the port_name, start_frame,
and end_frame fields. port_name is the name of a port for the target program and start_frame
and end_frame specify the message counts which delimit the time that the report will be gener-
ated. Most of the time, the user will indicate that reports are not desired. report () calls which use
a report category variable which has not been defined will not generate output.

The user creates report category variables by specifying them in the Database Startup files.

Figure 19 is an example of how one might specify a report category variable in & Database Start-
up file.

// Key Word Name Type (Value) Program(instance)

— - — - - — - . =

VAR interesting vars FRAMES,gain,2,5 beamformer (0)

Figure 19. Specifying repori() output using FRAMES mode.

This line says that we want to sce output which refer to “interesting_vars” from the report()
routines called from instance O of the beamformer program and called between the times that the
gain port receives its 2nd and Sth message. The user can set a different value for “interesting
vars” to each program and instance in the system, or the same value to all instances of a specific
program in the system, or the same value to all instances of all programs in the system.

For this report category variable to be effective, the beamformer program would have put
report() calls after places where it computes these intercsting variables. For examipie, a poriion
of the beamformer program might look like: i

speed of sound = ...
report (“interesting_vars”, “speed_oi_sound=%f", speed_of_sound);

A&;bad_sensors = ...
report ("interesting_vars”, no_bad_sensors=%d”, no_sensors);
As a result, when these calls are executed, meeting the conditions specified in the report cate-
gory variable, the report() will generate cutput. For example, the following output might appear:

REPORT :beamformer (0) :gain:frame=2, interesting_vars, clk=87.887,node=24

sp2ed_of_sound=1588.1
REPORT:beamformex(0):gain:frame=2, interesting_vars, clk=87.889,node=24

no_bad_sensors=(

When the report() routine writes data to standard output, it provides a header portion that
indicates the name of the report category variable, the name of the calling program, the instance
of the calling program, the time at which it occurred, and the physical node number.

1«

The report category variables “error”, “warning”, and “info” are predefined. The user cannot
set values for these variables. When a program uses them in a report() call, it forces the for-
matied data to be written to standard output. Also, the SPE generates a summary report at system
termination that indicates how many times each of these predefined variables are used. Shown
below are example uses of these categories:

/* Force report() to generate output. */
report(”info”,”Beginning Initialization”);
if (speed_of_sound > 2000)

report("warning”,”speed of sound out of range”);

Many of the SPE system calls have associated report category variables which can be set by
the user. They can be used to determinc when system calls are entered and exited, thus tracing
the execution of a program. Other report categories can be used to determine when memory is
allocated with malloc(), when files are open and closed, or to report performance monitoring
statistics (see Appendix B).

4.4 PERFORMANCE MONITORING INTERFACE
4.4.1 monitor_on(), monitor_off()

The SPE provides two simple routines, monitor_on() and monitor_off(), which the user can
use to monitor the performance of sections of code within an application program. The user
would use these routines to help find bottlenecks within the application and thus optimize the
slow programs of an application or reallocate the hardware resources to the application pro-
grams.

The monitor_on(} and monitor_off{) routines are placed around sections argument of code
that the programmer wants performance statistics on. The programmer supplies a string arug-
ment to the monitor rautines that identifies the section of code to be monitored. The monitor
routines keep track of how many times each secticn of code is entered, how much accumulated
time is spent in each section, the minimum and maximum times spent in each section, and the
accumulated number of operations performed in each section.

At the end of a run, the user can view the information recorded by each of the monitors. For
an example of how to use the monitors and view the results, see the entry for monitor_on() in
Appendix D.

5.0 USING SPE
5.1 COMPILING AND LINKING AN SPE PROGRAM

When compiling and linking an SPE program on the Intel Paragon, you must use the -nx
switch. To see the effects of this switch, read the Paragon User’s Guide manual. When linking an
SPE program, you must link in the library libspe.a.

For example, the following command line compiles and links the file myprogram.c to create
an executable file called myprogram:

% CC -nx -0 myprogram myprogram.c libspe.a
5.2 RUNNING AN SPE SYSTEM

A user loads and runs an SPE application by executing spe. The usage for spe is:

% spe -pn partition -on 0 -s sys_def filename
[[-d database_startup filename]...] [-1 log_filename]
[-ident] [-identall] [-noload] [-portmap]
{(-Dname]...] [[-Dname=def]...]

The arguments -pn partition -on 0 are arguments to the Paragon application(1) command,
which say that the spe program will run on node 0 of partition partition. The remainder of the
arguments, sys_def filename [-ident][-identall][-noload][-portmap][-1 log_filename]

{[-d database_startup_filename]...][[-Dname]..] [[-Dname=def]..], are passed to the spe
program after it is loaded on node 0.

The sys_def filenarme argument is required. This is the name of the Systern Definition file
that spe will read to start the application. spe then begins to load the programs specified in the
System Definition file onto the target nodes of the hardware. From the System Definition file,
spe reads the Program Definition files and builds and downloads a unique port map to each
program instance in the system. spe then reads the Database Startup files as specified on the
command line and in the Program Definition files and initializes the SPE database. Once this is
done, the programs are ready to run.

As an example, to run the system described in figure 3 you would execute:

% mkpart -sz 30 mypart
% spe -pn mypart -on 0 -s system/receiver -d database/receiver

Appendix A

STRIPE ALGORITHM

The algorithm used to compute the range of rows that will be striped over each instance of a
program is as follows:

if (instance < no_rows % no_instances)
{
start_row = instance * (no_rows / no_instances + 1);
end_row = start_row + (no_rows / no_instances);
}
else
{
start_row = instance * (no_rows / no_instances) +
(no_rows % no_instances)
end row = start_row + (no_rows / no_instances)- 1
}

As an example, if a 100x200 array is striped over 3 instances, then instance 0 wil! have rows
0 to 33, instance 1 will have rows 34 to 66, and instance 2 will have rows 67 to 99. The columns
dimension of the array does not affect the striping.

29

Appendix B

PREDEFINED REPORTS

spe_init
.epe_init()(entering):
spe_init(){exiting): freemem = %d

spe_idle
spe_idle(): Program has gone into idle state.

spe_terminate
spe_terminate(): Starting termination.
spe_terminate(): Finishing termination.

spe_malloc
spe_malloc(): ERROR: Could not malloc %d bytes of memory for
‘purpcse_str’. td bytes of memory left.

spe_malloc():Malloced %d bytes of menory at address %d for
‘purpose_str’. %d bytes of memory left.

db_set

db_set(): Set the valiue of ’'variable name’.

db_register
db_registered(): Registered 'variable name’.

portprobe
portprobe()(entering): Checking for message on any port.
portprobe(j(exiting): Message available on port ”portaame”.

portwait
portwait()(entering): Waiting for an available messace on any port.
portwait()(exiting): Message available on port “portname*”

Dortrecy
portrecv(“portname”) (entering): Waiting to receive message.
portrecv(“portname”) (exiting): Received message.

portsend
portsend("portname~)(entering): Waiting to send measage.
portsend(*portname~) (exiting): Sent message.

show_monitors

Appendix C

KEY WORDS

BUFFER
CONTROL
EXCLUDE
FALSE
FRAMES
FUNNEL
INPUT

NA

NET

OFF

ON

QUTPUT
PORT
PROGRAM
REPLICATED
STRIPED
TRANSPOSE
TRUE

VAR

31

Appendix D

PROGRAMMING CALLS

db_register()

db_sel()

db_wait()

monitor_on(), monitor_offf)
port_discard_data(j (no man page)
porteos(), portbos()

portexists(), portisconnected()
portid()

portinfo()

portcouni(} (no man page)
portnamie()

portprobe()

portreconfigure()

portrecv()

portsend()

portwait()

prograniinfo()

report()

report_enabled()

spe_clock()

spe_idle(}

spe_init()

spe_freemem()

spe_malloc(), spe_free() (no man page)
spe_terminate()
spe_terminate_define()
write_mat_file() (no man page)
write_sparse_mat_file() (no man page)

DB_REGISTER()

db_register(): Tell the database manager that we are using a variable of a given name and size.

Synopsis

Parameters

Description

Errors

#include <spe.h>

void db_register(
const char *name,

void *address,
DB_TYPE type,
size_t size);

typedef enum DB_TYPE {
DB_INT,
DB_FLOAT,
DB_DOUBLE,
DB_STRING,
DB_REPORT,
DB_FUNNEL,
DB_USER_DEFINED

} DB_TYPE,;

name is the symbolic name of the variable to be registered. name must be
31 characters or less.

address is the address in memory where the variable will be maintained.
type is an enumeration indicating the type of variable expected.
size is the size in bytes of the variable to be maintained.

Tell the database manager that a variable of the given nante and size will be used.
Each program which uses a database variable mustregister forit. All programs regis-
tering for the same variable must give the same value for the variable zype and size.
Once the variable is registered, its current value will be maintained in the location
provided by address. The variable will be delay-updated after a program calls the
db_set() routine, So that the update appears atomic and synchronous, the update wili
occur in the recipient programs when the next SPE routine which allows updates is
called. Since programs are synchronized to the point of input messages, when a pro-
gram is run on multiple instances, the variable will be updated when the next
portrecv() routine is called. If the program has no input ports the variable will be up-
dated when the next portsend() routine is called. If the program is run from only one
instance, then the variable will be updated during the next SPE call.

The SPE system will terminate and produce an error message if the type or size argu-
ments disagree with what is stored in the database.

33

DB_SET()

db_set(): Copy the value at the specified address to the named variable in the database.
Synopsis
#include <spe.h>

void db_set(
const char *name,
void *address,
DB_TYPE type,
size_t size);

typedef enum DB_TYPE {
DB_INT,
DB_FLOAT,
DB_DOUBLE,
DB_STRING,
DB_REPORT,
DB_FUNNEL,
DB_USER_DEFINED

} DB_TYPE;

Parameters

name is the symbolic name of the database variable to which a new value
will be copied. name must be 31 characters or less. The variable must
have aiready been regis'ered with db_register().

address is the address in memory where the value is copied from. Typically
this would be different from the address used in db_register(), to
which the data are copied. If the values are the same, then it is possible
that not all instances of the calling program would see a variable
change value at the same time.

type is an enumeration indicating the type of variable being stored to the
dutabase.

size is the size in byies of the variable to be copied. If the size does not
agree with the registered variable, then the SPE system will terminate
and produce an error message.

Description
Copy the value at the specified address to the named variabie in the database. The
database manager delay-updates the value to each program which has registered for
it (including itself). See db_register(for description.

The SPE system will terminate and produce an error message if the type or size argu-
ments disagree with what is stored in the database.

34

DB_WAIT()

db_wait(): Wait until all programs in the system have registered.

Synopsls
#include <spe.h>
] void db_wait(void);
Description
- Wait unti] all programs in the system have registered, and set all variables critical to
startup. This routine is used as a form of synchronization to the database to make sure
that all programs have registered variables critical to startup before proceeding. Pro-
grams are still able fo register variables after db_wait().
Errors

Must be called only once and after spe_init() or else the SPE rystem will terminate
and produce an error message.

35

MONITOR_ON(), MONITOR_OFF()

monitor_on(), monitor_off(): Keep performance statistics on section of code surrounded by these

calls.
Synopsis

Parameters

Description

Errors

#include <spe.h>

void monitor_on(
const char *section_name);

void monitor_off{
const char *section_name,
long no_ops);

section_name is the name of the section being monitored. Must be the same in both

routines for the section being monitored. section_name must be 31
characters or less.

no_ops is the number of operations executed in the section of code being
monitored.

These routines are placed around sections of code for which the programmer wants
performance statistics. monitor_on() and monitor_off() are placed, respectively, at
the beginning and end of a section of code. The same section_name string must be
supplied to both. When the monitor_on() routine is called, the time on the hardware
clock is recorded for the section of code which will be monitored. When the corre-
sponding monitor_off() routine is called (has the same section_name), the hardware
clock isread, and the elapsed time since the monitor_on() routine was called is com-
puted. The elapsed time is added to a variable keeping track of accumulated time, and
compared to other variables keeping track of minimum and maximum values. Also
recorded are the number of times each section of code is entered and the number of
accumulated operations performed by each. At the end of a run, the user can view
the data recorded by the monitor routines by turning on the performance report cate-
gory variable for the interested programs and instances. For instance
VAR performance ON beamformer((0)

Sections of code surrounded by the monitor_on() and monitor_off() routines can
embed other sections of code being monitored. Also, different sections of code can
use the same section_name, thus grouping the statistics for those sections. The
no_ops argument can be set to zero if the user does not care about the ops/sec statistic.

The SPE system will terminate and produce an error message if monitor_on() and
monitor_off() are not called in order for a given section of code.

monitor_on(”both”);

/* 128-pt Forward FFT */

monitor on("fft”);

cfft (buf, 128, 1);

monitox off ("fft”,4480); /* 5n*logn = 4480 */

. /* 128-pt Irnverse FFT */
monitor on("ifft”);
cfft {(buf, 128, ~1);
monitor off (”"ifft”, 4480);

wmonitor_ off (“both”, 0);

LIRS

PORTEOS(), PORTBOS()

porteos(): Sends an end-of-stream (EOS) mark ta an output port.
portbos(): Sends & beginning-of-stream (BOS) mark and a string containing a port configuraticn
label to an output port.
Synopsis
#include <spe.h>

void porteos(.
long port_id);

void portbos(
long port_id,
char *port_cfg);

Parameters
port_id is the port ID of the output port to which the EOS mark or BOS mark
will be sent. Port IDs are assigned by the SPE system and are returned
by the portid(), portprobe(), and portwait() system calls.
port_cfg is a string containing a port configuration label which is sent to an out-
put port. port_cfg must be 31 characters or less.
Description

porteos() sends an EOS mark to an output port. The EOS mark indicates that the pro-
gram will temporarily or permanently stop the flow of data to that port. The EOS
mark can be detected by a receiving program from the statvs argument of the
portrecv() routine. The EOS mark can be used to determine when a system is fin-
ished processing, to reroute the flow of data through a system, or to reconfigure the
ports attached to a net. See Section 4.1.5 on how to use porteos().

portbos() sends a BOS mark and a string containing a port configuration label to an
output port. The BOS mark and port configuration can be detected by areceiving pro-
gram from the status argument of the portrecv() call and the contents of the receive
buffer. The BOS mark is used torestart the flow of gata through a net or toreconfigure
the ports to which it is connected. See Section 4.1.6 on how to use portbes().

Errors
The SPE system will terminate and produce an error message if porteos() and
portbos() are called out of order or if the port_id argument is not & valid output port
ID.

Synopsis
#include <spe.h>

BOOLEAN portexists(
char *portname);

BOOLEAN portisconnected(
char *portname);

Parameters

rortname is the name of the port to check for existence or connectivity. port-
name must be 31 characters or less.

Description
portexists() returns a boolean value indicating whether the named port exists. This
routine can be used by a program designed to work with any number of input or out-
put ports. For example, a multiplexing program may not know ahead of time how
many input ports it will have to multiplex data from.

portisconnected() returns a boolean value indicating whether the named port is con-
nected to a net. This routine can be used by a program designed to allow partial con-
nectivity to its ports. It will allow the program to avoid reading or writing to ports
not connected to a net.

PORTEXISTS(), PORTISCONNECTED()
portexists(): Returns a boolean value indicating whether the port exists.
portisconnected(): Returns a boolean value indicating whether port is connected.

PORTID()

portid(): Returns the port ID for the named port.

Synopsis
#include <spe.h>
long portid(
char ‘*portname);
Parameters

portname must be the name of one of the ports specified in the Program Defini-
tion file of the calling program. If the named port does not exist, then
the SPE will terminate the run and produce an error message. port-
name must be 31 characters or less.

Return Vaiue
Returns the port ID for the named port.

Descripticn
Returns the port ID for the named port. The SPE system calls use port IDs to receive
or send data over the specified ports.

Errors
The SPE system will terminate if the named port does not exist in the Program Defi-
nition file of the calling program.

PORTINFO()

portinfo(): Copies the configuration information of a port to the address supplied by the caller,

Synopsils

#include <spe.h>

void portinfo(
long port_id,

. PORT_INFO *port_info);

typedef struct PORT_INFO {
/* Contains values which are common to each instance. ¥/
char name[32];
char cfg[32];
PORT_TYPE type;
BOOLEAN is_input,
BOOLEAN is_transposed,
BOOLEAN is_funneled,
long no_buffers,
long no_rows;
long no_columns,
long elem_size;
long striped_ovlip,
long block_ovip;
/* Contains values which are unique to each instance. ¥/
long start_row,
long end_row,
long start_ovip_row;
long end_ovip_row,

} PORT_INFO;

typedef enum PORT_TYPE {REPLICATED, STRIFED, CONTROL}

PORT_TYPE;

Parameters
- port_id is the port ID of the port for which information is sought, Port IDs are

assigned by the SPE system and are returned by the portid(),
portprobe(}, and poriwait() system calls.

port_info is the address to which the port’s configuration information will be
copied.

Description

Errors

Copies the configuration information of a port to the address supplied by the caliler.
Portions of the configuration information will be unique te the instance of the calling
program. The calling program uses this information to determine which portion of
the problem it works on. If type is STRIPED, then start_row, end_row,
start_ovip_row, and end_ovip_row contain valid data which are unique to “each
instance, If typeis REPLICATED or CONTROL, then they are not used. The other
fields of the structure always contain valid data and are the same for each instance
of a given port. '

The SPE system will terminate and produce an error message if the port_id ergument
is not a valid port ID.

PORTNAME()

portname(): Returns a pointer to the string name of the port for the given port ID.
Synopsis
#include <spe.h>
char *portname(
long port_id);
Parameters

port_id must be a valid port ID. Port IDs are assigned by the SPE system and
are returned by the pertid(), portprobe(), and portwait() system
calls.

Description
Returns a pointer to the string name of the port for the given port ID.

Errors
The SPE system will terminate and produce an error message if por:_id is not valid.

PORTPROBE()

portprobe(): Determines whether a message on a selected input port is ready to be received (non-
blocking).
Synopsis

#include <spe.h>

Icng portprobe(
long port_id); .
Parameters

port_id is the input port to be checked. Setting this value to —1 checks all input
ports.

Return Value
If a message is ready to be received, portprobe() returns the port ID of the selecied
port. Otherwise, it returns a2 minus one (-~1).

Description

Determines if a message on & selected input port is ready to be received. The pro-
grammer supplies in the argument por:_id the ID of the input poit to be checked. If
port_id is -1, then all input ports are checked. portprobe() immediately returns a
long value, indicating whether the selected port has a message available to be
received. If the programmer has selected a specific port (port_idis niot -1) and a mes-
sage is available on that port, then portprobe() returns the port ID of the selected
port. If the programmer has selected that all input ports be checked (port_id is ~1)
and a message is available on one or more of the input ports, then the port ID of the
message which was available first is returned. If a message is not available to be
received, the portprobe() routine will return a -1.

Errors

The SPE system will terminate and produce an error message if por:_id is not a valid
input port.

Report
The database variable portprobe can be set so that the program instance will write
a debug message to standard output when portprobe() is called.

When it is called, it will write one of the following statements to standard output.
portname is replaced with the port the message is available on. "

portprobe(): Message not available on any input port.
portprobe{): Message not available on port “portname”,

portprobe () : Message available on port “portname”.

PORTRECONFIGURE()

portreconfigure(): Reconfigures the port to one of the alternate configurations found in the Pro-

gram Definition file.
Synopsis
#include <spe.h>
void portreconfigure(
. long port_id;
char *port_cfg);
Parametears
port_id is the port ID of the port to be reconfigured. Port IDs are assigned by
the SPE system and are returned by the portid(), poriprobe(), and
portwait() system calls.

port_cfg is a string containing a port configuration label to which the port will
be reconfigured. port_cfg must be 31 characters or less.

Description
Reconfigures the port to one of the alternative configurations found in the Program
Definition file. The port is reconfigured to a port configuration as specified by the
argument port_cfg. portreconfigure() must be cailed after an EOS and BOS mark
are sent to an output port or after an EOS and BOS mark are detected on an input port.
See Sec 4.1.6 on how to use portreconfigure().

Errors
The SPE system will terminate and produce an error message if porteos(), poribos(),
and portreconfigure() are called out of order when an output port is reconfigured,
or if portreconfigure() is not called after a receiving program detects an EOS and
BOS mark on an input port, or if the port_id argument is not a valid port ID.

PORTRECV()

portrecv(): Posts a receive for a message on an input port and blocks the calling process until the
receive completes.

Synopsls

Parameters

Description

Errors

#include <spe.h>

void portrecv(
long port id,
void *buf,
size_t len;
long *status);

port_id is the port ID of the input port on which the message will be received.
Port IDs are assigned by the SPE system and are returned by the
portid(), portprobe(), and portwait() system calis.

buf points to the butfer where the message will be received.

len is the size of the receiving buffer in bytes. This is used as a consisten-
cycheck by the SPE. The SPE knows from the port map what the mes-
sage size should be. If the values do not agree, then SPE will terminate
the run and produce an error message.

status indicates whether an EQOS or BOS mark has been detected.

Posts areceive for a message on an input port and blocks the calling process until the
receive completes. This routine performs a special type of message transfer in which
the data received have been combined and collected from multiple instances accord-
ing to the port map specified for the receiving instance.

This routir.e can also detect whether the sender has sent an EOS or BOS mark. If an
EBOS mark is detected, then status will contain the predefined long value EOS and
no data will be copied to buf. If a BOS mark is detected, then stafus will contain the
predefined long value BOS and a string message from the sender will be copied to
buf. If neither mark is received, then szatus will contain the value zero and a normal
message Transfer ocours.

The SPE system will terminate and produce an error message if the /en argument is
not the right size or if the port_id argument is not a valid input port ID.

The database varigble portrecv can be set so that the program instance will write a
debug message to standard output when portrecv() is called and returned.

When it is called, it will write the following statement to standard output. portname
will be filled in with the port on which the call is waiting.
portrecv() (entering): Waiting to receive a message on
- port “portname”.

When it is returning, it will write the foliowing statement to standard output:

portrecv () (exiting) : Received a message on port “portname”.

PORTSEND()

portsend(): Sends a message to an output port and blocks until the send completes.
Synopsis
#include <spe.h>

void portsend(
long port id,
void *buf, .
size_t len);

Parameters

port_id is the port ID of the output port to which the message will be sent. Port
IDs are assigned by the SPE system and are returned by the portid(),
portprobe(), and portwait(j, system calls.

buf points to the buffer contuining the message to send.

len is the size of the sending buffer in bytes. This is used as a consistency
check by the SPE, The SPE knows from the port map what the mes-
sage size should be. If the values do not agree, the SPE will terminate
the run and produce an error message.

Description
Sends & message to an output port and blocks until the send completes. This routine
performs a special type of message transfer in which the data are decomposed and
sent to specific instances according the port map for the sending instance. When the
routine returns, the buffer can be reused.

Errors
The SPE system will terminate and produce an error message if the len argument is
not the right size or if the port_id argument is not a valid output port ID.

Report

The database veriable portsend can be set so that the program instance will write a
debug message to standard output when portsend() is called and returned.

When it is called, it will write the following staiement to standard output. poriname
will be filled in with the port to which the message is sent.
portsend() (entering) : Waiting to send message to port *
"portname” .
When it is returning, it will write the following statement to standard output:
portsend() (exiting): Sent message to port “portname”.

PORTWAIT()

portwait(): Waits until a message is ready to be received and returns the port ID for the message.

Synopsis

#include <spe.h>

long portwait(void);

Return Value

Description

Errors

Repcrt

Returns the port ID of a message ready to be received. Port IDs ars assigned by the

SPE system and are returned by the portid(), portprobe(), and portwait() system
calls.

The portwait() routine blocks untii a message is ready to be received on one of the
input ports. Then when a message is available, the portwait() routine returns with
the port ID of the pending port. The portwait() routine always returns the port IDs
of the input messages in the order they were received. All instances of a program are
guaranteed to receive the input messages in the same order. See alsc portprobe().

The SPE system will terminate and produce an error message if there are no input
ports specified in the System Definition file for the calling program.

The database variable portwait can be set so that the program instance will write a
debug message to standard output when pertwait() is called and returned.

When it is called, it will the write the following to standard output:
portwait () (entering): Waiting for an available message on
any port.
When it is retuming, it will write the following to standard output. portname will be
filled in with the port name on which the message is available.
portwait () (exiting): Message available on port "portname"

PROGRAMINFO()

program(): Copies the program information to the address supplied by the caller.
Synopsis
#include <spe.h>

void program(
PROGRAMLINFO *por:_info);

typedef struct PROGRAM_INFO {
cuLar name[32],
long no_ports;
long no_instances,
long my_instance,

} PROGRAM_INFO,
Parameters

port_info is the address to which the program information will be copied.
Descripticn

Copies program information to the address supplied by the calier. The calling pro-
gram can use this to determine its symbolic name, how many ports it has, how many
instances of the program there are, and which instance it is.

REPORTY()

report(): Conditionally writes to standard output formatted dats.

Synopslis
#include <spe.h>

void repori(
const char *report_ctg;
- const char *formar,

)i

(internal typedef)

typedef struct {
MODE mode;
char port_name[32];
long start_frame;
long end_frame

} REPORT;

typedef enum { OFF,ON,FRAMES } MODE,;
Parameters

report_ctg is the name of the global database variable that determines whether
this routine will write to standard output. The database variable is in-
ternally typed as REPORT. report_ctg must be 31 characters or less.

foermat is the format string which controls how the data are written. Itis iden-
tical to the printf() format string.

Description
This routine conditionally writes formeatted data to standard output. It functions iden-
tically to printf(} except that it has an additional argument, report_ctg, which it uses
to determine whether it will write to standard output. report_ctg is the name of a re-
port category variable in the global database. The user creates and manipulates report
category variables for use by the report() routine. The report() routine will write to
standard output based on the contents of the report category variable. The following
formula is used:
if ((mode == ON) ||
((mode == FRAMES) &&
(current _frame (port_name) >= start_frame) &&
(current_frame (port_name) <= end_frame)))

The user creates report category variables by specifying them in the Database Startup
files. From this file, the user can control the contents of report category variables thus
affecting which report() calls will output data. For a complete description, see Sec-
tion 4.3,

When the report() routine writes data to standard output, it provides a header portion
indicating the name of the report variable, the name of the calling program, the
instance of the calling program, the physical node number, and the time at which it
occurred.

To turn on a report which prints the “interesting” variables computed by instance 0
of the beamformer program, between the times that the “gain” port receives its 2nd
and 5th message, the following line should be included in one of the Database Startup
files:

VAR interesting_vars FRAMES, gain, 2,5 beamformer (0)

The beamformer program would have embedded repoit(} calls in the program where
the “interesting” variables are computed.

speed_of_sound = ...

Teport (”interesting vars”,”speed_of_sound=%f”, speed of_sound);

no_bad_sensors = ...
report (“interesting_vars”, “no_bad_sensors=%d”, no_sensors);

The standard output might look like:

REPORT:beamformer (0) :gain: frame=2, interesting vars,
clk=87.887,node=24

—— - . S L ot o = " 148 0 A B 1 ek S e e o e S S s o e e S e T Y S e o Fot RS 4 - .

speed of sound=1588.1

REPORT:beamformer (0) :gain: frame=2, interesting_vars,
clk=87.889, node=24

no_bad_sensors=0

Predefined Report Variables
The variables error, warning, and info are predefined report variables. When a pro-
gram uses themin a report() call, it forces the formatted data to be written to standard
output. The SPE keeps track of how many report() calls of each type are made. Ex-
ample:
raport (“info”, "Beginning Initialization”);
if (speed of sound > 2000)
raport (“warming”, “speed of sound out of range”);
/* Force this to be printed */

REPORT_ENABLED()

report_enabled(): Returns a boolean value indicating whether the report category variable is set so
that it would cause a report() czll, using it tc generate output.

Synopsils

Parameters

Description

#include <spe.h>

BOOLEAN report_enabied(
const char *report_ctg);

report_ctg is the name of the global database variable that determines whether
a report(routine would generate output. reporr_ctg must be 31
characters or less.

This routine returns a boolean value indicating whether the repor:_ctg variable is set
so that it would cause a report() call, using it to generate output. report_ctg is the
name of areport category variable in the global database. The routine is the same rou-
tine that the report() routine uses internally. It is provided to the user so that the user
can create its own report() style routines. See report() for more information about
its usage.

SPE_CLOCK()

spe_clock(): Returns the elapsed time in seconds since the application staried running.
Synopsis
#include <spe.h>

double spe_clock(void);

Return Value
Returns a double precision value for the elepsed time in seconds since the application
started running.

Description

The spe_clock() routine measures the time interval in seconds (with a precision of
100 ns) since the application started running. When the SPE starts an application, it
sends to each program instance an offset time which the SPE uses (adds the value to
dclock()) to get the elapsed time since the application sterted running.

54

SPE_IDLE()

spe_idle(): Goes to sleep until the system terminates (never returns),

Synopsils

Descripticn

#Hinclude <spe.h>

void spe_idle(void),

Goes to sleep until the system terminates (never returns). Allows & program to stop
running without breaking the connections it has to other programs. Programs which
send their data to a program which has gone idle will continue to run (will not hang
even though the receiving program is not there to get the data). After the system ter-
minates, an idle program will still be able to report results collected from its perfor-
Mance monitors,

55

SPE_INIT()

spe_init(): Initializes the SPE interface. Blocks until all programs in an SPE application have
called this routine.
Synopsis

#include <spe.h>
void spe_init(void),

Description
Initializes the SPE interface. Must be the first SPEroutine called. This routine blocks
until all progranis have initialized their SPE interface.

Errors

The SPE system will terminate if a program cannot initialize properly.

SPE_MALLOC(), SPE_FREE()

spe_malloc(): Gets memory just like malloc(), but also generates report() messages
indicating usage.
Synopsils

#include <spe.h>

void *spe_malloc(

size_t size,
char *purpose_sir),
Parameters
size is the amount of memory in bytes to allocate.

purpose_str is the string containing the purpose of the allocation.

Return Value
Returns pointer to space allocated.

Description
Gets memory just like mealloc() but also generates report() messages whea called
and at the end of a run that indicate memory usage or error conditions. If an error
condition occurs when spe_malloc() is called (i.e., not enough memory), a report()
is generated and the spe_terminaie() routine is called. If no error occurs when
spe_malloc() is called, then a report() message is generated (which the user can turn
on or off) that indicates the address of the memory allocated, the amount of memory
allocated and the amount of free memory left on the node. Also the user can request
that at the end of a run, a report() message be generatad indicating what memory was
allocated during the run. The argument purpose_str is a string supplied by the caller
indicating the purpose of the malloc. It is used in each of the report() messages
generated.

Errors
The SPE system will terminate and produce a report message if there is not enough
memory to allocate. The report message will look like:

spe_malloc(): ERROR: Couldn’t malloc %d bytes of memory for
‘purpose_str’., %d bytes of memory left,.

‘The report category variable spe_malloc can be set so that the program instance wiil
generzte a report() each time spe_malloc() is called When it is called, it will write
to standard output:
spe_malloc(): Malloced %d bytes of memory at address %d for
‘purpose_str’. %d bytes of memory left.
The report category variable malloc_summary can be set so that the program
instance will generate areport at the end of the run indicating what memory was allo-
cated during the run. The report will look as follows:
purpose_str address amount memory_ left time

— e e G o S WD U8 M A ot T e e S > D B S D e " e e Y G . A —— — — — — -~

SPE_TERMINATE()

spe_terminate(): Tells the SPE to terminate the applicaiion.

Synopsis
#include <spe.h>

void spe_terminate(void);

Descrlption

Tells the SPE to terminate the application. The SPE will cause each program in the
system to terminate when the next SPE routine is called, or if already in an SPE
routine, to terminate immediately. (It does not interrupt what the user’s program is
currently doing.) Each program will execute an optionally defined user termination
routine (see spe_terminate_define()), will generate any repert{) summaries which
have been requested, and will then exit. Any program in the system can initiate a
system termination by calling this routine.

SPE_TERMINATE_DEFINE()

spe_terminate_define(): Specifies a function to be executed when the program terminates.
Synopsls
#include <spe.h>

void spe_terminate_define(
void (*term_function) (void));

Parameters

term_function is the name of function to execute when the program terminates.
The function must have no arguments and return no value.

Description

Specifies a function to be executed when the program terminates. This allows a pro-
gram to execute critical cleanup code (such as closing files) when the program is ter-
minated by some other program.

Form Approved

REPORT DOCUMENTATION PAGE OMB No. 0704.0188

Public reparting burden far this collaction of inforrnation s estimated to average 1 hour per response, including tha tima for reviewing instructions, searching sxisling daio sources, gathering and
maintaining the data needed, and completing and reviewing the mllodlon oflnformdlon Snnd eommonu roglrdlnglhll burden estimate or any other aspect ofthis collaction of information, Including
suggestions for reducing this burden, 1o Washington Headquarters k Dl for 19 ond Reports, 1216 Jefforson Davis Highway, Sulte 1204, Nllnmon VA
22202-4302, and to the Office of Mlnlqomem and Budget, Paperwork Reduction Project {0704-0188), w-nhlnglon DC 20503.

1. ABENCY USE ONLY (Leave biank) 2. REPORT DATE
September 1294

3. REPGRT TYPE AND DATES GOVERED
Final: Sept 1993—Sept 1994

4, TITLE AND SUBTITLE

SCALABLE PROGRAMMING ENVIRONMENT

6. AUTHOR(S)
Perry Partow and Dennis Cottel

5. FUNDING NUMBERS

PE: 0602314N

PROJ: RJ14B41
SUBPROJ: 78-SUBN-01
ACC: DN 302180

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Naval Command, Control and Ocean Surveillance Center (NCCOSC)
RDT&E Division
San Diego, CA 92152-~5001

8, PERFORMING ORGANIZATION
REPORT NUMBER

TR 1672

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Office of Naval Research

10, SPONSORING/MONITORING
AGENCY REPORT NUMBER

800 North Quincy Street
Arlington, VA 22217-5660

11, SUPPLEMENTARY NOTES

120, DISTAIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION COUDE

Approved for public release; distribution is unlimited.

13, AUSTRAAGT (Maxiraum 200 wands)

"This raport devntibes the Scalable Programming Environment (SPE), which provides programmers with a transparent way
of creating scalable parallel applications for large-grained parallel computer architeclures, The SPE, which has been designed
primarily to support date-{low processing applications, allows programs to be scaled to execute on any number of processing
nodes while requiring no changes to the compiled binary code. The user is provided wilh a set of high-level message-passing
routines which can be used to connect multiinstanced heterogeneous programs in a system. The SPE library routines hide the
intricacies of how the parallel programs communicate. The details of the connections are specified in text files. The SPE allows
individued programs o be caded without knowledge of other parts of the system and thus allows systems to be quickly built,
modified, or scaled without program recompilation.

14, SUBJECT TEAME 16. NUMBER OF PAGES
paralle] dataflow parallel processing 69
parallel message passing scalable 16. PRICE CODE
parallel prograinming tools scalable programming environment

17. SECURITY CLASSIFICATICN
OF REPORT

18, SECURITY CLASSIFICATION

20. LIMITATION OF ABSTRACT
OF THIS PAGE

19. SECURITY CLASSIFICATION
OF ABSTRAGT

UNCLASSIFIED UNCLASSIFIED

UNCLASSIFIED SAME AS REPORT

NSN 7640-01-280-6500

Standard form 298 (FRONT)

212 NAME OF RESPONSIBLE INDIVIDUAL
Perry Partow

21b, TELEPHONE (Inciice Area Code)
(619) 6531663

210 OFHICE SYMBOL
Code 782

NEN 7846-01-250-6500

INITIAL DISTRIBUTION

Code 0012 Patent Counsel (1)
Code 0271 Archive/Stock 6)
Code 0274 Library)
Code 70 T.F. Ball 1)
Code 78 P. M. Reeves (1)
Code 782 R. A. Dukelow 1
Code 782 D. M. Cottel (48]
Code 782 P. P. Partow (50)
Code 784 J. C. Lockwood (1)

Defense Technical Information Center
Alexandria, VA 22304~6145 @)

NCCOSC Washington Liaison Office
Washington, DC 20363-5100

Center for Naval Analyses
Alexandria, VA 22302-0268

Navy Acquisition, Research and Development
Information Center (NARDIC)
Arlington, VA 22244-5114

GIDEP Operations Center
Corona, CA 91718-8000

Office of Naval Research
Arlington, VA 22217-5000

